LECTURER3

The limits

Assume f is defined in a neighborhood of c and let c and L be real numbers. The function f has limit L as x approaches c if, given any positive number ε, there is a positive number $\mathrm{d} \delta$ such that for all x , $0 \prec|x-c| \prec \delta \Rightarrow|f(x)-L| \prec \varepsilon$

We write $\lim _{x \rightarrow c} f(x)=L$

The sentence $\lim x \rightarrow c$ fx L is read, "The limit of f of x as x approaches c equals L." The notation means that the values $f(x)$ of the function f approach or equal L as the values of x approach (but do not equal) c.
$\operatorname{Ex}(3)$:
If $f(x)=\frac{x^{2}-3 x+2}{x-2}, x \neq 2$ find $\operatorname{Limf}_{x \rightarrow 2}(x)$
Solution: $\operatorname{Lim}_{x \rightarrow 2} f(x)=\operatorname{Lim}_{x \rightarrow 2} \frac{x^{2}-3 x+2}{x-2}=\operatorname{Lim}_{x \rightarrow 2} \frac{(x-2)(x-1)}{(x-2)}=\operatorname{Lim}(x-2)=2-1=1$

Limits at Infinity

We note that when the limit of a function $\mathrm{f}(\mathrm{x})$ exist as approachs infinity, we write $\operatorname{Lim}_{x \rightarrow \infty} f(x)=L$

Also, we write $\operatorname{Lim}_{x \rightarrow+\infty} f(x)=L$ for + ive values of x and $\operatorname{Lim}_{x \rightarrow-\infty} f(x)=L$ for -ive values of x

For one sided and Tow sided limits, we have $\operatorname{Lim}_{x \rightarrow \infty} f(x)=L$ iff $\operatorname{Lim}_{x \rightarrow+\infty} f(x)=L$ and $\operatorname{Lim}_{x \rightarrow-\infty} f(x)=L$

