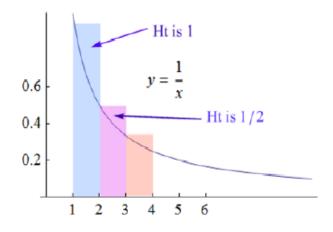
المتتابعات والمتسلسلات

### المحاضرة الرابعة

## Convergence and Divergence of Series

# The Key Question- does the series converge?

**Example**: Show that the series  $1 + \frac{1}{2} + \frac{1}{3} + \cdots$  diverges.



The sum of the areas of all these rectangles is

$$1 + \frac{1}{2} + \frac{1}{3} + \cdots$$

المتتابعات والمتسلسلات

The area under the curve  $\int_1^\infty \frac{1}{x} dx$  is smaller than the sum of the areas of the rectangles.

$$\int_{1}^{\infty} \frac{1}{x} dx = \ln x \bigg]_{1}^{\infty} = \ln \infty - \ln 1 = \infty.$$

The area under the curve y = 1/x is less than the sum of areas of rectangles

On the other hand, the series  $\sum_{n=1}^{\infty} \frac{1}{n^2}$  converges because the integral  $\int_1^{\infty} \frac{1}{x^2} dx$  is finite.

### The integral Test

Let  $\{a_n\}$  be a sequence of positive numbers. Let  $\mathbf{a_n} = \mathbf{f(n)}$  where f(x) is a continuous, positive, and decreasing function for all  $x \geq N$  where N is a positive integer.

Then the series  $\sum_{n=1}^{\infty} a_n$  and the integral  $\int_N^{\infty} f(x) dx$  both converge or both diverge.

Since 
$$\int_1^\infty \frac{1}{x} dx = \infty$$
, the series  $\sum_{n=1}^\infty \frac{1}{n}$  must diverge.

This illustrates that we can use an integral to test if a series converges.

المتتابعات والمتسلسلات

### **Example:**

Use Integral Test to determine whether or not  $\sum_{n=1}^{\infty} \frac{4}{n^3}$  converges.

Note that if n is raised to a high enough power, the series will converge.

To see if  $\sum_{n=1}^{\infty}\frac{4}{n^3}$  converges, determine whether or not  $\int_1^{\infty}\frac{4}{x^3}dx$  converges.

$$\int_{1}^{\infty} 4x^{-3} dx = \frac{4x^{-2}}{-2} = \frac{2}{x^{2}} \Big]_{\infty}^{1} = \frac{2}{1} - \frac{1}{\infty} = 2 - 0 = 2.$$

Since the integral converges, the sum converges.