deal (g3¢a (52 55 O lslisiall g lagliiall

dayl ) 5 _pualaall

Convergence and Divergence of
Series

The Key Question- does the series

converge’?
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Example: Show that the series 1 + 3 + 3 + ... diverges.
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The sum of the areas of all these rectangles is

1+1+1-|-
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sum of the areas of the rectangles.

/ —dlena:J =lnooc—Ilnl=c.
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The area under the curve / ld.:: Is smaller than the
1

The area under the curve y = 1/x is less than the sum of areas of
rectangles
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On the other hand, the series E —s Cconverges because
yz—11 -
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the integral —dx is finite.
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The integral Test

Let {a, } be a sequence of positive
numbers. Let a,, = Sf(#2) where f(x) is
a continuous, positive, and decreasing
function for all x = N where N is a
positive integer.
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Then the series a, and the integral
n=1

X0
/ f(x)dx both converge or both
N

diverge.
1 — 1
Since] —dz = oo, the series » ~ — must diverge.
1+ n=1"
This illustrates that we can use an integral to test if a
series converges.
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Example:

Use Integral Test to determine whether or

.C)C) 4
not E —& converges.
n—1 nS s

Note that if n is raised to a high enough power, the series will converge.
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To see if E — converges, determine
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/ AdxrS3dx = e 2:| =
1 — 2 xr _
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whether or not / — dz converges.
. :

=2—-0=2.

Since the integral converges, the sum
converges.




