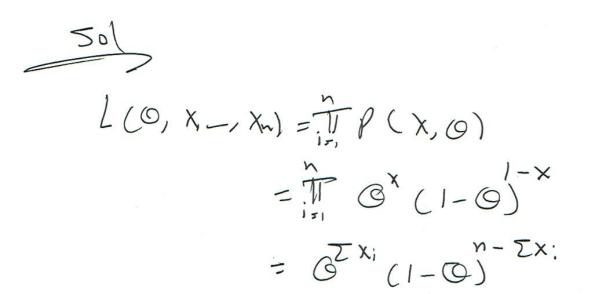
Statistical inference lecture6 **Chapter Two** Efficiency And Cramer-Rao variance Lecturer Omar Adil

5- Efficiency

D when Q, On is unbised, Then $MSE(\hat{G}_1, \hat{G}_1) = Var(\hat{G}_1, \hat{G}_2), i.e.$ $e(\hat{\Theta}_1, \hat{\Theta}_2) = \frac{Var(\hat{\Theta}_1)}{Var(\hat{\Theta}_2)}$ IF e(ô, ôz) = 1, That Means ô, like ôz IF e(ô, ô) >1, That Means ô better than ô. IF e (ô, ô) < 1, That Means O, better than (when one of O, On is unbiase and biase then $e(\hat{O}_1, \hat{O}_1) = \frac{MSE(\hat{O}_1)}{MSE(\hat{O}_1)}$

6- Minimum Variance bound Estimator Let Xi, Xi, -, Xn be avandom sample from a dist. with p.d.f fox, 0), where OGR. IF it is possible to express De La fox, 6) in the following form $\frac{2}{80} \ln f(x, 0) = A(0) [T(x) - 9(0)]$ or $\sum_{x \in a} L_{x}(0, x) = A(0) \{T(x) - g(0)\}$ Then Tox) is a M.V.B.E for 9(0) With Variance 9(0) A(0) Example :-Let XI, -, Xn be ar. I from dist. with $P, M, f \neq (x, 0) = O^{x}(1 - 0)^{-x}, x = 0, 1$ Find the M.V. B.E for O



- LnL(0)= Tx Ln(0) + (n- Ixi) Ln(1-0) $\frac{\partial L_n L}{\partial Q} = \frac{\Sigma x_i}{Q} - \frac{n - \Sigma x_i}{1 - Q}$ $= \frac{n}{O(1-O)} \left\{ \frac{Tx!}{n} - O \right\}$ $A(O) \quad Tco) \quad J(O)$ - JUEX IS M.V.B. E for O. To find Var (X) = 9'(0) A(0) $= \frac{1}{0(1-0)}$ $Var(\bar{X}) = O(1-O)$

Example
In Sampling from
$$\mathcal{N}(0, \sigma^2)$$
, show
That $\frac{1}{n} \mathbb{E} X_i^{(1)}$ is a M.V.B.E of σ^1
 $\frac{50!}{2\sigma^2}$
 $\frac{1}{r} \mathcal{K}(r, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x_i^{(1)}}{2\sigma^2}}$
 $\frac{1}{r} \frac{1}{r} \frac{1}{r$

4,

$$\frac{1}{n} \operatorname{Var}\left(\frac{\pi x^{1}}{n}\right) = \frac{g(\omega)}{A(\omega)}$$

$$= \frac{1}{\sqrt{2} \leq u}$$

$$= \frac{2 e^{-u}}{n}$$

$$\operatorname{Vow} \operatorname{IS} \operatorname{Var}\left(\frac{\pi x^{1}}{n}\right) = \frac{2 e^{-u}}{n} \operatorname{77}$$

$$\therefore X \sim \mathcal{N}\left(e_{1} e^{-u}\right), \quad Z = \frac{X - e}{n} \sim \mathcal{N}\left(e_{1}\right)$$

$$= \frac{2}{2} \operatorname{7}^{2} = \frac{\pi x^{1}}{n} \sim \operatorname{71}^{2}(1)$$

$$= \frac{2}{2} \operatorname{7}^{2} = \frac{\pi x^{1}}{n} \sim \operatorname{71}^{2}(1)$$

$$= \frac{\pi x^{1}}{n} \sim \operatorname{71}^{2}(1)$$

7- Cramer - Rao mequality
Let X, --, Xn be ar. v from Population
with p.d.f f CX, 0), where QG
$$\Lambda$$
.
Let T=t(X, X, --, Xn) be an unbiased
estimator of g(0). Then subject To
Certain regularity condition:
Var(T) $\geq \frac{\Gamma g'(0)}{-n E \left[\frac{3^2}{2} Ln F(X, 0)\right]}$

$$Var(T) = \frac{\left[9'(0)\right]^2}{-E\left[\frac{3}{3002}LnL(0,x)\right]}$$

$$\frac{50}{10} eff = \frac{Var(C.R)}{Var(X)}$$

$$\frac{Var(X)}{Var(X)} = \frac{5^2}{n^2} = \frac{0}{n}$$

$$Var(T) \ge \frac{[g'(0)]^2}{-E[\frac{5^2}{30}LnL]}$$

$$F(x, G) = \frac{e^{-G}G^{x}}{X_{i}!}$$

$$L(G, X) = \frac{h}{1} \frac{e^{-G}G^{x}}{X_{i}!}$$

$$= \frac{e^{h}G}{G^{T}X_{i}!}$$

$$TT X_{i}!$$

LnL = -nQ + ZX; LnQ - Z LnX; !

$$\frac{\partial L uL}{\partial \Theta} = -n + \frac{T x_i}{\Theta}$$

$$\frac{\partial^2 L uL}{\partial \Theta^2} = \frac{-T X_i}{\Theta^2}$$

$$\overline{\varphi}$$

$$\sum E\left[\frac{3^{2}L_{n}L}{3}\right] = \frac{E\left[-\frac{1}{6}x\right]}{3}$$

$$= -\frac{1}{6}\frac{E(x)}{3}$$

$$= -\frac{n}{6}$$

$$= -\frac{n}{6}$$

$$\therefore 9(0) = 0 \implies 9'(0) = 1$$

$$\sum Var(T) = \frac{1}{6}$$

$$\sum Var(CR) = -\frac{0}{n}$$

$$= \frac{0}{n}$$

-

(2) To find M.V.B.E for ()

$$\frac{\partial L_n L}{\partial O} = -n + \frac{T x_i}{O}$$

$$= \frac{-n O + T x_i}{O}$$

$$= \frac{n}{O} (T x_i) = r_0^2$$

$$= \frac{n}{CO} \left\{ \frac{T_{X_i}}{n} - CO \right\}$$

$$A(\omega) \quad T(\omega) = \overline{X} \quad is \quad \alpha \text{ M.v. B.} E$$

$$= \frac{9(\omega)}{A(\omega)}$$

$$Var(\overline{x}) = \frac{1}{n/6} = \frac{0}{n}$$

Example
Let X1, -, Xn be av. VS with p.d.f
fux, O) =
$$\frac{2}{O}e^{-\frac{2}{O}}x$$

() what is sam Mest possible variance
for an unbiased estimator of Mean
of this dist.
(E) Can you find an unbiased est. has this
variance?

Sold To find smallest. Variance we must
find Var(T)
$$\geq \frac{[g(0)]^{1}}{-nE[\frac{3}{2}LnF]}$$

 $\therefore X \sim E \times P(\frac{3}{2})$
 $\therefore X \sim E \times P(\frac{3}{2})$
 $= \frac{0}{2}$
 $= \frac{1}{2} = \frac{1}{2}$
 $= \frac{1}{2}$

 $= E\left[\frac{3^{2}\ln\left(1+\frac{1}{9}\right)}{9^{2}}\right] = \frac{1}{9^{2}} - \frac{2}{9^{2}}$ - Var(T)) [K] -n[-1/02] ? <u>1/4</u> = n/192 = (2) E(x) = M = _ $J = \frac{\sigma^2}{h} = \frac{\sigma^2}{h}$ = 0 - x has that sam lest variance. H.w find the N.V. B. E for 0 the A sample of Size (n) is drown from B(40), find (D M.V.B.E for Q @ Is it efficient 7 11

Hiw Let X, _, Xn be av. r with P.m.f $P(x, 0) = \frac{e^{-i\omega}}{(e^{x} \cdot x)}, \quad x = 0, 1 - \frac{e^{-i\omega}}{(e^{x} \cdot x)}$ () Find C.R.LB for 1 @ Can you find an unbiased esti. that has this variance (3) find M.V. B.E for to